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Co-simulating model representations of both intracellular and extracellular space can be used to approximate complex neural network responses to extracellular potentials.
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Predicted LFPs (red signal) exhibit a characteristic population spike (PS) as observed in experimental evoked 08 :gc 09 :fc ) :gc
potentials (black signals) elicited by a 200 pA biphasic, square-wave pulse [3]. 2 A T e " e
Spiking activity at most locations saturates above stimulus amplitudes of ~500 pA (shown at right). (A) When Qoz 07 ;
stimulating at cell body locations, granule cell activity versus stimulus amplitude follows a sigmoidal trend. (B) * © e 4
When stimulating at PP locations, the trend is more logarithmic. (C) The differences between (A) and (B) gives rise 0= . 2
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For nearly all stimulating conditions the half-height width (HHW) of PS was shorter (ms) when stimulating at the cell
body layer and PP at the crest relative to the supra and infrapyramidal transverse locations (D, above). While more ey [ o i
variable, nearly all stimulating amplitudes resulted in larger peak PS amplitudes (%) at the crest relative to supra/ ¢ o
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Output of the multi-objective optimization function (U, above) for MPP/LPP (E, left) and CBL (E, right) stimulation cases is presented - ) :
in the panel to the right. High values of U indicate strong PS. The PS amplitude and power efficiency were maximized and the half- | RN 00
height width was minimized with equal weighting in this optimization. (CBL-cell body layer, MPP/LPP-medial/lateral perforant path). E 0 ®0 W0 A0 00 w0 00 20 30 40 50 600
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